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Metallic blades
working at the
high-temperature
sector (after the
combustion cham-
ber) of aircraft and
stationary turbines
a re nowadays
protected against
heat, corrosion,
oxidation, and
erosion by thermal
barrier coatings

(TBCs) made via electron-beam physical
vapor deposition (EB-PVD) or air plasma
spray (APS). To fulfill all these functions,

TBCs are composed by several compo-
nents: ceramic top coat (TC), thermal
grown oxide (TGO), and metallic bond coat
(BC). One of the principal key physical
properties of the top coat is the thermal iso-
lation capability, which is directly related to
the chemical composition and microstruc-
ture of the deposited ceramic (Ref 1-3).
Moreover, the influence of the microstruc-
ture on the thermal conductivity of EB-
PVD TBCs is specifically related to the spa-
tial and geometrical characteristics of their
porosity (Ref 1, 4, 5). Thus, a viable and
profitable optimization of the thermal isola-
tion effectiveness of ceramic top coats
could be achieved by understanding the re-
lation: thermal conductivity/microstruc-
ture. With this work, we seek to develop
basic knowledge of this significant relation-
ship. Further, we also expect to develop un-
derstanding of the correlation between the
values of the EB-PVD manufacturing pa-
rameters and the resulting microstructure,
gaining insight into the physics of the pro-
cess itself.

EB-PVD TBCs exhibit a microstructure
composed of parallel conical columns
grown in a direction perpendicular to the
plane of the substrate separated by inter-
columnar gaps. Additionally, feather-
arms gaps form inside of each column
grown until they reach the periphery, in-
creasing the open porosity together with
the intercolumnar gaps. Finally, arrays of
closed intracolumnar pores form inside of
each column after every rotation of the
substrates during the coating process.
Due to the differences in size, accessibil-
ity, and anisotropic shapes and orienta-
tion of the pores, the complete analysis of
their geometrical and spatial characteris-
tics could only be achieved using a so-
phisticated measuring technique/equip-
ment such as ultrasmall-angle x-ray scat-
tering (USAXS) (Ref 6). In the pres-

ent work, we characterize three different
morphologies in as-coated and after 1100
°C/100 h heat treatment conditions via the
2D-collimated USAXS instrument at the
UNICAT beam line 33-ID, Advanced
Photon Source, ANL (Ref 7). Samples
were manufactured by varying the EB-
PVD process parameters, namely sub-
strate temperature and rotations speed
(see Fig. 1). The obtained USAXS data
were related via computer-based model-
ing to values of geometrical and spatial
characteristics of the pore populations,
namely: volume, shape, size, aspect ratio,
and orientation; which represent statisti-
cal average values based on Gaussian dis-
tributions (Ref 8). In addition, thermal
conductivity measurements of the corre-
sponding microstructures were done via
laser flash method (LFA) employing a
Netsch-LFA 427 equipment.

Figure 2 shows the experimental and
modeled polar distribution graphs of
USAXS-scattering intensities versus azi-
muthal angle (�), corresponding to the
“feathery” microstructure in as-coated
conditions manufactured at low substrate
temperature/fast rotation speed. Accord-
ing to the results of the modeling, the
three microstructures have similar dimen-
sions and volume at their intercolumnar
pores. The “feathery” microstructure con-
tains slightly larger feather-arms pores
followed by the “coarse” and “intermedi-
ate.” However, the noticeable difference
between the coatings resides in the size
and volume of intracolumnar pores. At
the “feathery” microstructure, these pores
are the thinnest and contain evidently
higher volume values compared with the
“intermediate” and “coarse” microstruc-
tures, respectively. The relation between
the intracolumnar pores volume of the
three coatings agrees with that of the val-
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Fig. 1 Scanning electron micrographs of EB-PVD TBCs cross sections manufactured at different temperatures and rotation speeds conditions. (a)
“Intermediate,” 950 °C/12 rpm. (b) “Coarse,” 1000 °C/3 rpm. (c) “Feathery,” 850 °C/30 rpm
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ues of their thermal conductivity as
shown in Fig. 3. Additionally, after the
heat treatment of the coatings at 1100 °C/
100 h, an increase of the thermal conduc-
tivity at all microstructures occurs. Still,
the “feathery” structure contains the bet-
ter distribution of shaped intracolumnar
spherical pores due to the higher content
of pores arrays. Also, according to the
USAXS-modeling, this microstructure
retains its dimensions of the feather-arms,
which also obstruct the heat (phonons)
transfer through the columns of the coating.

In conclusion, the thermal conductivity of
EB-PVD TBCs can be influenced via
controlling of the process parameters dur-
ing the coating process. Specifically, low
substrate temperatures and high rotation
speed create the thermophysical condi-
tions for the formation and continuous
growth of an elevated number of intraco-
lumnar pores along the complete width of

the columns until they reach the periph-
ery, creating additionally deeper and
stable gaps between feather-arms. Model-
ing of the thermal conductivity based on
the spatial and geometrical characteristics
of all pores at EB-PVD TBCs is under de-
velopment.
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Fig. 2 Polar distribution of the USAXS-scattering intensities measured at different q values versus azimuthal angle (�) corresponding to the “feath-
ery” EB-PVD TBCs microstructure

Fig. 3 Thermal conductivity versus measuring temperature values of three EB-PVD TBCs pro-
duced by varying the process parameters: coarse, intermediate, and feathery
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